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Abstract

Forced convection heat transfer to incompressible power-law fluids from a heated circular cylinder in the steady cross-flow regime has
been investigated numerically by solving the momentum and thermal energy equations using a finite volume method and the QUICK
scheme on a non-uniform Cartesian grid. The dependence of the average Nusselt number on the Reynolds number (5 6 Re 6 40),
power-law index (0.6 6 n 6 2) and Prandtl number (1 6 Pr 6 1000) has been studied in detail. The numerical results are used to develop
simple correlations as functions of the pertinent dimensionless variables. In addition to the average Nusselt number, the effects of Re, Pr

and n on the local Nusselt number distribution have also been studied to provide further physical insights. The role of the two types of
thermal boundary conditions, namely, constant temperature and uniform heat flux on the surface of the cylinder has also been presented.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The steady cross-flow past a circular cylinder represents
an idealization of many industrially important processes.
Typical examples include the flow on the shell side of tubu-
lar heat exchangers, pin fins, the use of thin wires as mea-
suring sensors and probes, the use of screens to filter
polymer melts and sewage sludges, etc. In addition to such
an overwhelming pragmatic significance, this flow is also
regarded to be one of the classical problems of fluid
mechanics. Consequently, a voluminous body of informa-
tion on a variety of flow phenomena associated with this
configuration has accumulated over the years, albeit most
of it relates to the Newtonian fluids. Several excellent sur-
vey articles and books summarizing the current state of the
art for Newtonian fluid flow past a circular cylinder are
now available [1–11]. Hence, adequate information is
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now available on most aspects of flow and heat transfer
for Newtonian fluid flow past a circular cylinder. Suffice
it to say here that even for Newtonian fluids, the flow char-
acteristics have been studied much more extensively than
the corresponding heat or mass transfer problems.

On the other hand, many materials of industrial signifi-
cance exhibit a range of non-Newtonian fluid behaviour
features. For instance, most polymeric systems (melts and
solutions) and slurries exhibit shear dependent viscosity
thereby displaying shear-thinning or shear-thickening, or
both, under appropriate conditions. Despite their wide
occurrence in fiber reinforced resin processing, in the han-
dling of paper pulp suspensions, fluidization of fibrous
materials, etc., very little work is currently available on
the cross-flow of shear-thinning and shear-thickening fluids
which are frequently modelled by the simple power-law
model [12,13] over a circular cylinder. The available litera-
ture for the flow past a single cylinder and across a periodic
array of cylinders [2,14,15] seems to suggest the viscoelastic
effects to be minor in this flow configuration. Furthermore,
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Nomenclature

cp specific heat of the fluid (J/kg K)
CWT constant wall temperature
D diameter of the cylinder (m)
FVM finite volume method
h local convective heat transfer coefficient (W/

m2 K)
I2 second invariant of the rate of the strain tensor

(–)
j Colburn factor for heat transfer (–)
k thermal conductivity of the fluid (W/m K)
Ld downstream length from the center of the cylin-

der to outlet (–)
Lu upstream length from the inlet to the center of

the cylinder (–)
Lx length of the domain (–)
Ly half height of the domain (–)
m power-law consistency index (Pa sn)
n power-law behaviour index (–)
ns direction normal to the cylinder surface (–)
Nu average Nusselt number (–)
Nu (0) Nusselt number at the front stagnation (h = 0)

point (–)
Nu (h) local Nusselt number (–)
Nu (p) Nusselt number at the rear stagnation (h = p)

point (–)

p pressure (–)
p1 pressure at the exit (–)
Pe Peclet number (–)
Pr Prandtl number (–)
qw heat flux on the surface of the cylinder (W/m2)
QUICK quadratic upwind interpolation for convective

kinematics
Re Reynolds number (–)
t time (–)
T temperature (–)
Tw temperature at the surface of the cylinder (K)
T1 temperature of the fluid at the inlet (K)
U1 uniform velocity of the fluid at the inlet (m/s)
UHF uniform heat flux
Vx, Vy x- and y-components of velocity (–)
x streamwise coordinate (–)
y transverse coordinate (–)

Greek symbols

�ij component of the rate of the strain tensor (–)
g viscosity (–)
h angular displacement from the front stagnation

point (degree)
q density of the fluid (kg/m3)
sij shear stress (–)
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the fluid relaxation time often shows a dependence on the
shear rate, which is similar to shear-dependence of viscos-
ity. Thus, the relaxation time will also decrease with the
increasing value of the Reynolds number thereby a suitably
defined Deborah number would also be small. On this
count, the viscoelastic effects are not expected to be signif-
icant in this case. Therefore, it seems to be reasonable to
begin with the flow of purely viscous power-law type fluids
as long as the power-law constants are evaluated in the
shear rate range appropriate for the flow over a cylinder
and the level of complexity can gradually be built up to
accommodate other non-Newtonian characteristics. This
work is thus concerned with the convective heat transfer
from a heated circular cylinder to streaming power-law
fluids. It is useful to briefly review the prior scant available
literature before presenting the new results obtained in this
study.

2. Previous work

It is well known that the so-called Stokes paradox is
irrelevant for shear-thinning fluids, as the viscous forces
dominate the flow even faraway from the cylinder [16,17].
Consequently, reliable results on the drag of a cylinder in
power-law fluids (shear-thinning fluids) are now available
in the so-called creeping (zero Reynolds number) flow
regime [16,18,19]; these results are in excellent agreement
with each other. These low Reynolds number results have
been complemented by 2-D numerical simulations up to
Reynolds number values of 40 for a range of values of
the power-law index [20–24]. Combined together, reliable
values of the individual and total drag coefficients for the
2-D steady cross-flow of power-law fluids past a circu-
lar cylinder are now available up to Re 6 40 and for
0.5 6 n 6 2. In addition to the macroscopic flow parame-
ters like drag, Bharti et al. [23] also reported extensive
results on the detailed streamline contours, surface pres-
sure, vorticity and viscosity for a range of conditions,
thereby elucidating the complex role of power-law rheol-
ogy in this flow configuration. Recently, Sivakumar et al.
[25] reported the critical values of the Reynolds number
marking the end of creeping and that of steady symmetric
flow regime for the cross-flow of a power-law fluids
(0.3 6 n 6 1.8) past a circular cylinder. The analogous
problem of axial flow of Carreau model fluids along the
axis of a cylinder has recently been investigated by Hsu
et al. [26].

On the other hand, as far as known to us, there has been
only one study on forced convection heat transfer to
power-law fluids from a heated cylinder. Soares et al. [22]
used the stream function-vorticity approach to solve the
momentum and thermal energy equations to obtain the
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detailed velocity and temperature fields for three values of
Reynolds number (5, 20 and 40) as functions of the power-
law index and Prandtl number (1–100). They approximated
the unconfined flow condition by enclosing the cylinder in a
cylindrical envelope of fluid of diameter ranging from 12.2
to 54.6 times that of the radius of the cylinder. Therefore,
their results could have been influenced by the wall effects.
Furthermore, they solved the momentum and energy equa-
tions in cylindrical coordinates with an exponential trans-
formation in the radial direction. Aside from these results
based on the solution of the complete governing equations,
there have been some heat transfer studies based on the
boundary layer flow approximations, e.g. see [27–31, etc.]
and most of these have been reviewed elsewhere [2,4].

There have been a very few experimental studies of this
problem and most of these relate to the higher Reynolds
and/or Prandtl number conditions [32–37]. In the only
studies on heat transfer from heated cylinders to power-
law fluids, Mizushina et al. [33] and Takahashi et al. [32]
reported mean Nusselt number over the following ranges
of conditions: 0.72 6 n 6 1.0; 43 6 Re 6 19,200 and 5.6 6
Prm 6 40,000; and 0.784 6 n 6 1.0 and 40 6 Re 6 4000,
respectively. These heat transfer results have been supple-
mented by limited mass transfer results from short
cylinders in the range as 0.5 6 L/D 6 1.8505, 0.751 6 n 6

1.0; 0.0118 6 Re 6 2500 and 856 6 Prm 6 5.95 � 105 by
Kumar et al. [34], 0.89 6 n 6 1.0 and 0.0018 6 Re 6 513
by Ghosh et al. [35]. In all such experimental studies,
empirical correlations have been presented which are evi-
dently restricted to the rather narrow range of experimental
conditions. Furthermore, none of these have been validated
using independent experimental data. More recently, vor-
tex shedding characteristics from a circular cylinder in
power-law fluids have been studied by Coelho et al. [38]
and Coelho and Pinho [39,40] in the range of Reynolds
number of 50–9000, and power-law indices of 0.543–
0.880 for power-law fluids and 0.5127–0.6311 for Car-
reau–Yasuda fluids, for 5 and 10% blockage (H/D) and
of aspect (L/D) ratios of 12 and 6. The main findings of
these works [38–40] were that: (a) an increase in either
the shear-thinning tendency, aspect ratio and fluid elastic-
ity reduce the various critical Reynolds numbers marking
the end of the various flow regimes, (b) the fluid elasticity
reduces the extension of the transition regime and increases
the formation length (which decreases the Strouhal number
in the laminar shedding regime) and (c) the cylinder bound-
ary layer thickness increases and therefore the diffusion
length reduces (which increases the Strouhal number) with
an increase in the shear-thinning tendency. Ogawa et al.
[41] experimentally investigated the viscoelastic effects on
the forced convection mass transfer in polymer solutions
around a sphere and a circular cylinder in the Reynolds
number range 1 6 Re 6 200. Similarly, there have been a
few studies on the sedimentation of cylinders in power-
law fluids [42,43], but the main thrust of these studies
was to develop drag correlations. Finally, there have been
a few numerical studies on the forced convection heat
transfer to power-law fluids from a square cylinder
[44,45], from a sphere [46] and from tube banks [47].

Thus, very little reliable information is available on the
two-dimensional steady forced convection heat transfer in
power-law fluids from a circular cylinder at moderate val-
ues of the Reynolds and Prandtl numbers. This paper aims
to fill this gap in the literature. In particular, the thermal
energy equation has been solved numerically for a range
of values of the Reynolds and Prandtl numbers and
power-law index using a finite volume method to obtain
the detailed temperature field around the cylinder, which
in turn are used to deduce the local and average values
of the heat transfer coefficient. The Reynolds number was
systematically incremented in steps of 5 in the range 5–
40, Prandtl number varied in the range 1–1000 and
power-law index in the range 0.6 6 n 6 2, thereby embrac-
ing both shear-thinning and shear-thickening fluid behav-
iour. In addition, the role of the two limiting cases of the
thermal boundary condition, namely, constant temperature
and constant heat flux on the surface of the cylinder has
been investigated. The paper is concluded by presenting a
preliminary comparison with the prior results available in
the literature.

3. Problem statement and mathematical formulation

Consider the 2-D cross-flow of uniform velocity U1 and
temperature T1 past a long circular cylinder of diameter D.
The unconfined flow is simulated here by considering the
flow in a channel with the cylinder placed symmetrically
between the two plane walls with slip boundary conditions
(Fig. 1), as opposed to the concentric cylindrical domain
used by Soares et al. [22].

While in practice, the thermal boundary conditions on
the surface of the cylinder can be quite involved, it is cus-
tomary to consider the two limiting conditions, namely,
either the constant temperature (CWT), Tw, or at a uniform
heat flux (UHF), qw imposed on the surface of the cylinder.
Furthermore, the thermo-physical properties of the fluids
(q,m,n,cp and k) are assumed to be independent of temper-
ature and that the viscous dissipation is negligible. While
this approximation is reasonable for each of the relevant
physical properties, except for the power-law index (n)
and power-law consistency index (m). Thus, it is perhaps
a reasonable expectation that the results reported herein
would be applicable to the situations where the tempera-
ture difference between the fluid and the cylinder is not
too large, and one can justifiably use the physical proper-
ties at the mean fluid temperature. Also, the thermal depen-
dence of the thermo-physical properties of the fluids (or of
Prandtl number) varies from one substance to another, the
present work elucidates the role of Prandtl number over a
wide range of conditions rather than focusing on any spe-
cific fluids. This assumption allows the flow equations to be
solved independently of the thermal energy equation.
Under these conditions, the dimensionless governing equa-
tions in the Cartesian coordinates are given as:
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Fig. 1. Schematics of the unconfined flow around a circular cylinder.
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Continuity equation

oV x

ox
þ oV y

oy
¼ 0 ð1Þ

x-component of the momentum equation

DV x

Dt
¼ � op

ox
þ 1

Re
osxx

ox
þ osyx

oy

� �
ð2aÞ

y-component of the momentum equation

DV y

Dt
¼ � op

oy
þ 1

Re
osyx

ox
þ osyy

oy

� �
ð2bÞ

Thermal energy equation

DT
Dt
¼ 1

RePr
o2T
ox2
þ o2T

oy2

� �
ð3Þ

The rheological equation of state for power-law fluids is
given by

sij ¼ 2g�ij ð4Þ

where i, j = x,y, and �ij are the components of the rate of
strain tensor, related to the velocity field in the Cartesian
coordinate, as follows:

�ij ¼
1

2

oV i

oj
þ oV j

oi

� �
ð5Þ

The viscosity, g, is given by

g ¼ ðI2=2Þðn�1Þ=2 ð6Þ
where n is the power-law index (<1: shear-thinning; 1:
Newtonian; and >1: shear-thickening fluids) and I2 is the
second invariant of the rate of strain tensor whose compo-
nents are available in the standard texts, e.g. see Bird et al.
[48].

Eqs. (1)–(6) have been rendered dimensionless using the
following scaling variables: D for length variables, U1 for
velocities, D/U1 for time, qU 2
1 for pressure, m(U1/D)n

for stress components, and m(U1/D)n�1 for viscosity,
respectively. The temperature is non-dimensionalized by
(Tw�T1) and qwD/k for the CWT and UHF conditions,
respectively. The dimensionless groups, namely, Reynolds
number (Re) and Prandtl number (Pr), appearing in Eqs.
(2) and (3) are defined as

Re ¼ qDnU 2�n
1

m
and Pr ¼ cpm

k
U1
D

� �n�1

ð7Þ

However, sometime it is customary to introduce the Peclet
number (Pe = Re � Pr = qcpU1D/k) which is independent
of the power-law constants and thus offers the possibility of
reconciling the results for Newtonian and power-law
fluids.

After substituting Eq. (4) into Eq. (2), the conservative
form of the non-dimensional governing equations (Eq. 2)
can be written as

x-component
DV x
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¼ � op

ox
þ g

Re
o2V x
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þ o2V x

oy2
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þ 2

Re
�xx
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y-component
DV y
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þ g

Re
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Thermal energy equation

DT
Dt
¼ 1

Pe
o2T
ox2
þ o2T

oy2

� �
ð9Þ

It is important to add here that the main thrust of the study
is on steady solution, but the time-dependent terms are
retained in Eqs. (8) and (9) because the false transient
method has been used here to obtain the steady-state
solution.

The physically realistic boundary conditions in dimen-
sionless form for this flow may be written as follows.

� At the inlet boundary: Uniform flow

V x ¼ 1; V y ¼ 0; T ¼ 0 and
op
ox
¼ 0 ð10aÞ

� At the upper boundary: Slip flow

oV x

oy
¼ 0; V y ¼ 0;

oT
oy
¼ 0 and

op
oy
¼ 0 ð10bÞ
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� On the circular cylinder: No-slip flow

V x ¼ 0; V y ¼ 0;
op
ons
¼ 0

and

T ¼ 1 ðfor CWTÞ

oT =ons ¼ �1 ðfor UHFÞ

(
ð10cÞ

where ns represents the unit normal vector on the surface
of the cylinder.
� At the exit boundary: The homogeneous Neumann

boundary condition has been used:

o/
ox
¼ 0 and p ¼ p1 ¼ 0 ð10dÞ

where, / is a scalar (i.e., Vx, Vy and T).
� At the plane of symmetry, i.e., center line: Symmetric

flow

oV x

oy
¼ 0; V y ¼ 0;

oT
oy
¼ 0 and

op
oy
¼ 0 ð10eÞ

Owing to the symmetry, the solution is obtained only in
the upper half of the domain in Fig. 1. The numerical solu-
tion of Eqs. (1), (8) and (9) along with the above-noted
boundary conditions yield the velocity, pressure and tem-
perature fields and these, in turn, are used further to obtain
global characteristics like drag coefficients and Nusselt
number, as described elsewhere [23,49]. The local Nusselt
number on the surface of the circular cylinder is evaluated
by the following expression:

NuðhÞ ¼ hD
k
¼
�ðoT=onsÞ for CWT condition

1=T for UHF condition

�
ð11Þ

Such local values have been further averaged over the sur-
face of a cylinder to obtain the surface averaged (or overall
mean) Nusselt number as follows:

Nu ¼ 1

2p

Z p

0

NuðhÞdh ð12Þ

The average Nusselt number can be used in process engi-
neering design calculations to estimate the rate of heat
transfer from a cylinder in the CWT case, or to estimate
the average surface temperature of the cylinder for the
UHF condition. Dimensional analysis suggests the average
Nusselt number to be a function of the Reynolds number,
Prandtl or Peclet number, power-law index and the type of
thermal boundary condition for the problem studied here-
in. This relationship is explored in this study.

4. Numerical solution methodology

Since a detailed description of the solution procedure
and of the choice of numerical parameters is available else-
where [23], only the salient features are recapitulated here.
The governing equations have been discretized using the
semi-implicit finite volume method [50] on a non-staggered
and non-uniform grid, using the QUICK scheme [51–53]
for convective terms and central difference scheme for other
terms. The final equations were solved using a Gauss-Seidel
iterative algorithm. The steady-state solution has been
obtained using the false transient method. A zero-volume
cell at each boundary condition has been used to imple-
ment the boundary conditions exactly at the surface of
the cylinder. The fully converged velocity field [23] was
used as the input to the thermal energy equation. The
resulting temperature field is used to deduce the values of
the local and average Nusselt number on the surface of
the cylinder. The results presented in this work are based
on a domain size Lu = Ld = Ly = 30.5D for all values of
Re and n, and grid size, M � N:

101� 283 for
n P 0:8; 5 6 Re 6 10

n P 0:65; 15 6 Re 6 40

�

61� 176 for
n < 0:8; 5 6 Re 6 10

n < 0:65; 15 6 Re 6 40

�

where M and N are the number of grid points on the half
surface of the cylinder and on the symmetry line in the
upstream/downstream sections, respectively. A thorough
justification for these choices of the numerical parameters
has been provided in our previous studies [23,49].
5. Results and discussion

Extensive numerical results have been obtained by sys-
tematically varying the value of the Reynolds number in
the range as 5 6 Re 6 40, in the steps of 5, and the
power-law index in the range 0.6 6 n 6 2.0, in the steps
of 0.1 for n < 1 and in the steps of 0.2 for n > 1, and the
Prandtl number, Pr = 1, 5, 10, 20, 50, 100, 200, 500 and
1000 for the two thermal boundary conditions on the sur-
face of the cylinder. The maximum value of the Peclet num-
ber was, however, limited to 5000, i.e., Pe 6 5000 therefore
the range of Prandtl number is linked to the value of the
Reynolds number.
5.1. Validation of results

The numerical methodology used in this work has been
validated extensively for the flow characteristics of power-
law fluids [23] and for heat transfer characteristics of
Newtonian fluid [49], all of which show excellent corre-
spondence with the literature values. While the present heat
transfer results for Newtonian fluids are within 2–3% of the
previous numerical results and within 10% of the experi-
mental values, as detailed in Bharti et al. [49], the present
results for power-law fluids are compared with the only
study available in the literature [22] in Table 1. An exami-
nation of Table 1 reveals that the present results are gener-
ally within ±5% of the literature values, the agreement is



Table 1
Comparison of the average Nusselt number (Pr = 1) with the literature values for power-law fluids

Re Source CWT Condition UHF Condition

n = 0.8 1 1.2 1.4 0.8 1 1.2 1.4

5 Present 1.684 1.586 1.532 1.501 1.829 1.700 1.631 1.591
Soares et al. [22] 1.621 1.590 1.566 1.548 1.735 1.693 1.661 1.637

10 Present 2.227 2.087 2.002 1.948 2.494 2.309 2.197 2.125
Soares et al. [22] 2.116 2.058 2.011 1.973 2.340 2.259 2.197 2.146

20 Present 2.974 2.771 2.639 2.546 3.409 3.147 2.973 2.854
Soares et al. [22] 2.799 2.696 2.613 2.545 3.182 3.048 2.931 2.840

30 Present 3.529 3.279 3.110 2.988 4.082 3.763 2.546 3.389
Soares et al. [22] 3.309 3.171 3.060 2.969 3.807 3.622 3.474 3.354

40 Present 3.992 3.703 3.502 3.352 4.635 4.274 4.019 3.827
Soares et al. [22] 3.736 3.570 3.435 3.325 4.325 4.104 3.926 3.781
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somewhat better for n > 1 than that for n < 1. Deviations
of this order are not at all uncommon in numerical studies
and arise due to the differences in the flow schematics,
problem formulations, grid and/or domain sizes, discretiza-
tion schemes, numerical methods, etc. For instance, some
of the discrepancies seen in Table 1 can be ascribed to
the cylinder-in-cylinder domain and to the slightly different
discretization used by Soares et al. [22]. In comparing the
results shown in Table 1, it should be borne in mind that
owing to the non-linear viscous terms, the numerical values
for power-law fluids are known to be less accurate than the
corresponding values for Newtonian fluids. Thus, owing to
such variations inherent in numerical solutions, it is virtu-
ally impossible to estimate the accuracy of the results. But
based on our past extensive experience and on the valida-
tion shown elsewhere [23,49] and in Table 1 here, the pres-
ent results are believed to be reliable to within ±2 � 3% of
the mean of the two values reported in Table 1.

5.2. Heat transfer results

The dependence of the local Nusselt number on the sur-
face of the cylinder, of the Nusselt number at the stagna-
tion points and of the average Nusselt number on Re, Pr

and n for the two thermal boundary conditions is presented
and discussed in the ensuing sections. The average Nusselt
number values have also been interpreted in terms of Col-
burn heat transfer factor, j.

5.2.1. Variation of local Nusselt number on the surface of the

cylinder

Figs. 2 and 3 show the representative variation of the
local Nusselt number, Nu (h) on the surface of the cylinder
with Reynolds and Prandtl numbers and power-law index
at Reynolds number of 5 (1 6 Pr 6 1000) and 40
(1 6 Pr 6 100), power-law index of 0.6, 1 and 2 and for
both CWT (solid lines) and UHF (broken lines) thermal
boundary conditions, respectively. While these figures
show qualitatively similar behaviour of the Nusselt number
over the surface of the cylinder, but a complex interplay
between the flow behaviour index (n) and kinematic param-
eters (Re,Pr) is observed in quantitative terms. At low
Reynolds and/or Prandtl number, the local values of the
Nusselt number show little variation over the surface from
h = 0 to h = p. This is due to the fact that at such low Rey-
nolds numbers, the heat transfer occurs primarily by con-
duction, with a little convection, irrespective of the type
of the thermal boundary condition on the surface of the
cylinder and power-law index. This finding is also consis-
tent with heat/mass transfer in power-law fluids from beds
of spherical particles [43,54–56] and from tube banks
[19,47]. As the Prandtl number and/or Reynolds number
is gradually increased, the contribution of convection
increases and the Nusselt number is seen to vary over the
surface of the cylinder.

The value of the local Nusselt number in the front of the
cylinder increases with an increase in the shear-thinning
behaviour (i.e., decrease in the value of n below unity),
while it decreases with an increase in the shear-thickening
behaviour for both thermal boundary conditions. The
value of h at which the maximum in Nusselt number occurs
can be seen to decrease with an increase in Reynolds num-
ber for n < 1. On the other hand, in the rear of the cylinder,
the Nusselt number decreases all the way up to h = p when
there is no flow separation, e.g. see Fig. 2(a)–(b), and up to
h = hs (the separation angle) in a separated flow, e.g. see
Figs. 2(c) and 3(a)–(c). The Nusselt number also increases
in the recirculating region in both shear-thinning and
shear-thickening fluids. The isoflux boundary condition
results in a somewhat greater value of the Nusselt number
than that for the isothermal condition in shear-thickening/
Newtonian fluid behaviours in the front of the cylinder;
however, the opposite behaviour is seen in shear-thinning
fluids. The Nusselt number was always seen to be higher
for the isoflux condition than that for isothermal condition
in the rear of the cylinder at low Reynolds numbers; this
trend is however reversed at high Reynolds numbers. Also,
the Nusselt number is seen to be larger in shear-thinning
fluids than that in Newtonian and in shear-thickening flu-
ids. Thus, shear-thinning promotes heat transfer whereas
shear-thickening seem to impede it.

5.2.2. Nusselt number at the stagnation points

Qualitatively similar dependence of the Nusselt number
at the front stagnation (h = 0) point, Nu (0) (Fig. 4(a)) and
at the rear stagnation (h = p) point, Nu (p) (Fig. 4(b)) can



Fig. 2. Dependence of distribution of the local Nusselt number, Nu (h) over the surface of the cylinder on Pr and n for Re = 5 under CWT (–) and UHF
(– –) condition.
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be seen on the Reynolds number, Prandtl number and
power-law index for both thermal boundary conditions.
At low Reynolds and/or Prandtl numbers, the front stag-
nation Nusselt number shows little or no variation with
the power-law index. The variation, however, increases
with an increase in the value of the Reynolds and/or
Prandtl numbers. As the level of shear-thinning (n < 1)
increases, the value of Nu (0) increases, the opposite
dependence of flow behaviour index can be seen in the
shear-thickening (n > 1) fluids. The dependence of the
Nusselt number at the front stagnation point on the Re,
Pr and n can be represented by the following correla-
tion:
Nuð0Þ ¼ F ðnÞRecPrd where F ðnÞ ¼ anDb

and D ¼ 3nþ 1

4n

� �
ð13Þ

The values of a, b, c, d and the resulting average and max-
imum deviations of the numerical data from Eq. (13) are
shown in Table 2. Admittedly, the maximum deviation of
�15% may appear large, but considering the wide ranges
of the Reynolds and Prandtl numbers and of the power-
law index, it is regarded to be acceptable.

The value of the Nusselt number at the rear stagnation
point, Nu (p) shows a complex dependence on the Reynolds
and Prandtl numbers and power-law index (Fig. 4(b)). This



Fig. 3. Dependence of distribution of the local Nusselt number, Nu (h) over the surface of the cylinder on Pr and n for Re = 40 under CWT (–) and UHF
(– –) condition.
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dependence is clearly influenced by the varying levels of
recirculation behind the cylinder. Flow separation does
not occur in shear-thinning fluids at Re = 5 [23] whereas
it can clearly be seen in shear-thickening fluids at this value
of the Reynolds number. At low Reynolds and/or Prandtl
numbers, the Nusselt number corresponding to the rear
stagnation is seen to be independent of the power-law
index. Furthermore, the value of Nu (p) is seen to vary a lit-
tle with the Prandtl number and/or the power-law index in
the absence of separation (Fig. 4(b)) for the CWT condi-
tion, whereas significant dependence of Nu (p) on the Pra-
ndtl number is seen for the UHF condition (Fig. 4(b)).
The value of Nu (p) in shear-thickening fluids is seen to
increase with an increase in Reynolds and/or Prandtl
number and/or power-law index for both thermal bound-
ary conditions; however, the UHF boundary condition
shows a lower value of Nu (p) than that for the CWT
condition.

5.2.3. Average Nusselt number, Nu

Owing to the underlying differences in the two
thermal boundary conditions on the surface of the cylin-
der, the results (Fig. 5(a) and (b)) are discussed sepa-
rately.



Fig. 4. Effect of Re, Pr and n on Nu (h), the Nusselt number at the (a) front (h = 0) and (b) rear (h = p) stagnation points of the cylinder for CWT (–) and
UHF (– –) boundary conditions.
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(a) CWT Condition: The dependence of the average Nus-
selt number on the Reynolds and Prandtl numbers and
power-law index for the CWT condition is shown in
Fig. 5(a). For a fixed value of the Reynolds number, the
average Nusselt number increases with a gradual increase
in Prandtl number, irrespective of the value of the fluid
behaviour index, n. The shear-thinning fluids (n < 1) show
a higher rate of enhancement in heat transfer with an
increase in the Prandtl number, which decreases as the fluid
behaviour changes to Newtonian (n = 1) and finally, to
shear-thickening (n > 1). For a fixed value of the power-
law index, the value of average Nusselt number increases
with a gradual increase in Prandtl number and/or Reynolds
number and/or both. For instance, at Pr = 1 the value of the
Nusselt number increases from 1.863 to 4.478 at n = 0.6 and
from 1.458 to 3.089 at n = 2 as Re is increased from 5 to 40,
whereas at Pr = 100, it increases from 9.615 to 25.505 and
from 5.534 to 14.388 at n = 0.6 and 2, respectively.

(b) UHF Condition: The effects of the Reynolds number,
Prandtl number and power-law index on the average
Nusselt number for the uniform heat flux (UHF) condi-
tion are seen (Fig. 5(b)) to be qualitatively similar
as above, though the actual difference between the two val-
ues is somewhat dependent on the values of the Reynolds
and Prandtl numbers and of the power-law index.
The value of the average Nusselt number is always higher
under the UHF condition than that for CWT condi-
tion. For instance, the two values of the Nusselt number
differ by a maximum of �18% for n = 1.4, Re = 5 and
Pr = 500.



Table 2
Functional parameters for the dependence of the Nusselt number and j-
factor on the Reynolds number (Re), Prandtl number (Pr), power-law
index (n) and on the thermal boundary conditions

Nu (0)
(CWT)

Nu (0)
(UHF)

Nu

(CWT)
Nu

(UHF)
j

(CWT)
j

(UHF)

a 0.932 0.947 0.052 0.146 0.761 0.861
b 0.229 0.400 0.091 0.104 0.413 0.413
c 0.532 0.533 0.246 0.226 0.561 0.556
d 0.348 0.347 2.552 2.161 – –
e – – 0.495 0.483 – –
f – – 0.032 0.049 – –
g – – 0.721 0.704 – –
‘ – – 0.119 0.102 – –

davg

(%)
2.92 3.13 2.32 1.22 3.80 2.82

dmax

(%)
14.71 15.68 17.00 9.69 20.46 13.80

d: relative r.m.s. deviation from the numerical data (Total # of data
points = 560).
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The functional dependence of the average Nusselt num-
ber on the Reynolds and Prandtl numbers and the power-
law index for both conditions can be best represented by
the following correlation:

Nu ¼ F ðnÞRee=ðfnþ1ÞPrg=ð‘nþ2Þ

where F ðnÞ ¼ að�bnþcÞDd ð14Þ

The values of the constants a, b, c, d, e, f, g and ‘ appearing
in Eq. (14), together with the maximum and average devi-
ations are summarized in Table 2 for both thermal bound-
ary conditions. An excellent agreement can be seen
(Fig. 6(a)) between the present numerical data and the pre-
dictions of Eq. (14) for both isothermal and isoflux bound-
ary conditions.

5.2.4. Colburn j-factor

Some further attempts have been made to establish the
functional relationship between the Reynolds, Prandtl
and average Nusselt numbers by introducing the Colburn
heat transfer factor, j defined as

j ¼ Nu

RePr1=3
ð15Þ

The main virtue of this parameter lies in the fact that it
affords the possibility of reconciling the results for a range
of Reynolds and Prandtl numbers into a single curve. The
present numerical data for the j-factor can be best repre-
sented by the following correlation

j ¼ a
nbRec ð16Þ

The best values of the fitted constants in Eq. (16) together
with the average and maximum deviations from the numer-
ical data are shown in Table 2. Fig. 6(b) shows a compar-
ison between the numerical values of j and the predictions
of proposed Eq. (16).
5.3. Comparison with experimental results

Limited experimental results are available for heat/mass
transfer from cylinders in power-law fluids, but most of
these either relate to viscoelastic liquids [41,57] or to the
values of the Reynolds number and/or Prandtl number
which are beyond the range of conditions covered in this
study, thereby eliminating the possibility of direct compar-
isons, except for the limited results reported in Ghosh et al.
[36]. Based on the limited mass transfer data from cylinders
in power-law fluids (0.0018 6 Re 6 513; 0.72 6 n 6 1.0)
from a cylinder, Ghosh et al. [35,36] presented the follow-
ing correlation

Nu ¼ aRe
�

bþ ðn�1Þ
3ðnþ1Þ

�
Pr1=3 ð17Þ

a ¼
2:260 ðb ¼ 1=3Þ for Re 6 10

0:785 ðb ¼ 1=2Þ for Re P 10

�

and reported the average deviation of ±7.5%, though the
maximum errors of 35–40% are evident in their paper.

A comparison between the present numerical results and
the predictions of Eq. (17) is shown in Fig. 7. In assessing
this comparison, it must be borne in mind that the present
results are based on the assumptions of infinitely long cir-
cular cylinder and constant fluid properties whereas the
L/D ratio for the cylinders used in experimental studies is
of the order of 2. Furthermore, there will always be, how-
ever small, wall effects present in experimental results
which are neglected in numerical simulations. The wall
effects also tend to yield somewhat higher values of the
Nusselt number than that under unconfined condition
and the trends seen in Fig. 7 corroborate this assertion.
Furthermore, the mass transfer results are obtained by
the weight loss method and therefore the size (and possibly
shape) of the test specimen is continuously changing. These
factors coupled with the fact that there is virtually no over-
lap in terms of the values of the Schmidt number associated
with Eq. (17) and that of Prandtl number in the present
numerical work, are probably responsible for the discrep-
ancies seen in Fig. 7, albeit these are of the same order as
the uncertainty of the experiments. But nonetheless Eq.
(17) does capture qualitatively the dependence of the Nus-
selt number on the Reynolds and Prandtl numbers, and
therefore the comparison shown in Fig. 7 should be inter-
preted qualitatively rather than quantitatively.

From an engineering point of view, it is also appropriate
to make some general remarks about the utility of the
results reported herein. Admittedly, the thermo-physical
properties, notably, power-law consistency index of the flu-
ids does vary with the temperature, hence, it is worthwhile
to assess the impact of this assumption. Eq. (14) can be re-
arranged to show that



Fig. 5. Dependence of the average Nusselt number (Nu) on Re, Pr and n for (a) CWT and (b) UHF conditions.
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Nu / gk
eff where k ¼ g

ð‘nþ 2Þ �
e

ðfnþ 1Þ

� �

Using the value of e, f, g, ‘, etc. presented in Table 2,
it can readily be shown that the value of k � 0.14 in
the range 0.6 6 n 6 2. Thus, even a 100% change in the
value of the effective viscosity (geff) due to temperature
variation will alter the value of Nusselt number by 10%.
Therefore, it appears that the assumption of the tempera-
ture independent thermo-physical properties of fluids used
in this work is not as bad as it seems. The results presented
herein can thus be used when a moderate variation in ther-
mo-physical properties is encountered by using the physi-
cal properties evaluated at the mean temperature. In case
of appreciable variation in the values of the effective vis-
cosity due to temperature-dependent properties, one can
perhaps use the same correction as that used for Newto-
nian fluids, i.e., (gs/gw)0.14, atleast as a first order approx-
imation. In case of large variations, however, one must
solve the coupled non-linear differential equations which
further adds to the computational difficulties even in New-
tonian fluids, as is reflected by the lack of such results in
the literature even for air and water. Also, it is important
to mention here that many materials of industrial signifi-
cance exhibit the value of power-law index as low as
0.3–0.4. Owing to the increasing degree of non-linearity
of the viscous term, such small values of n pose enormous
convergence problems, as also reported by others [20,58].



Fig. 7. Comparison between present numerical results and experimental
results.

Fig. 6. Comparison (a) average Nusselt number: present vs. predictions of Eq. (14) and (b) j-factor: present (Eq. (15)) vs. predictions of Eq. (16).
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Therefore, it is worthwhile to explore the possibility
of other methods for such small values of power-law
index.
6. Conclusions

The forced convection heat transfer in cross-flow of
power-law fluids from an unconfined circular cylinder has
been numerically investigated using FVM and the QUICK
scheme in conjunction with a non-uniform grid for the
range of Reynolds number (5 6 Re 6 40), power-law index
(0.6 6 n 6 2.0) and Prandtl number (1 6 Pr 6 1000) in the
steady flow regime. The local Nusselt number in the front
side of the cylinder decreases as the fluid behaviour changes
from shear-thinning to shear-thickening fluids and/or as
the Prandtl number is decreased, irrespective of the value
of the Reynolds number and the type of the thermal
boundary condition. The minimum local value was seen
to occur near the point of separation, which again increases
in the recirculating region. The Nusselt number values at
the front stagnation point show very weak dependence
on the power-law index and thermal boundary conditions,
as opposed to that at the rear stagnation point. The shear-
thinning fluids (n < 1) show higher heat transfer than that
for Newtonian (n = 1) and shear-thickening fluids (n > 1).
Also, the average Nusselt number increases with an
increase in the Reynolds number and/or Prandtl number
and/or both, irrespective of the type of fluid behaviour.
The functional dependence of the present numerical results
on the kinematic parameters (Re,Pr) and on the power-law
index have also been presented.
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